A Bit About Bale Walls

Currently in rough draft form, this information is the beginning preparation for an article or perhaps two that will appear in a future issue of The Last Straw journal with the theme “All About Bales.” Your comments and input are welcome.

by Joyce Coppinger, Managing Editor/Publisher, The Last Straw Journal

Wall Structures
The structural methods used for the design and construction of bale walls are generally of two types: loadbearing and non-loadbearing. Stated another way – bales supporting the weight of the roof and any snow or other roof loads, and any post-and-beam or modified post-and-beam structure with the bales used as infill for insulation only.

Timberframe is the post-and-beam structure of choice in most countries. Posts of conventional milled 4×4, 4×6 and 6×6 wood; lodge poles, timber bamboo and other types of materials have been used. Modified post-and-beam structures are wide-ranging and diverse – anything from box columns to ladder-truss wall systems, to the current experiments in and development of SIP or structural insulated wall systems (also called wall panel systems or panelized walls) using bales as the insulation material rather than rigid foam insulation as the material sandwiched between the sheathing on both sides. [See articles in TLS#42 and #55.]

Widths
Bale walls come in many different widths depending on the size of bales you use, how you lay the bales as you stack them, and even the type of material baled and the method used to stack the bales to form the wall.

Widths Using Small Square Bales: Typical widths for bale walls are 16 or 18 inches when the bales are laid flat (strings or wires on the top of the bale). If stacked on edge, the bale width will be 14 inches with the strings or wires on the side of the bale. If the bale is stood on end to fill a framed space, the bale can be either 14, 16 or 18 inches depending on the size of the bale and the direction in which you set the bale.

Size of Bales
Even though a bale may be called “square,” it’s usually rectangular in shape.

The size of a small square bale may vary by region or country depending on the type of baling equipment used or the method of making the bale, e.g., bale press or hand pressed compared to using a mechanical baler. The bale may also vary because of the type of mechanical baler used and how it’s set to produce a bale.

The small and medium size balers used in some regions of the U.S. have a fixed bale chamber that produces a bale that is 14-in.x16-in., 14-in.x18-in. or 16-in.x18-in. The length can be varied to produce bales between 36 inches and 41 to 48 inches. This is the range of length that is required by most automatic bale wagons used to pick up bales in the field in the U.S..

You should also be aware that there are also other sizes of bales used – some are called “jumbo” bales because of their large size. In some places, these large bales might be called 4x4s or 6x6s or 8x8s. Some people define a square bale’s size as small, medium and large. Small bales can be 24in.x24in.x48-in. Or they can be 14-in.x 16 to 18 in.x 36 to 48 in. A medium bale of this type is around 4-ft.x4-ft.x6-ft., and large bales around 6-ft. to 8-ft. square by 8-ft. to 10-ft. long. Weight depends on the type of hay and settings of the baling equipment.

And density (compactness of the baled material) or compression (how much pressure is placed on the bales to “compress” them when they are created or after they are stacked) of the bales might also change the dimensions.

The binding material on the bales is most often wire or poly twine; sisal (natural fiber) isn’t the best to use as it tends to break while the bales are being handled. Some people don’t use wire as they are concerned about moisture might condense on it or be drawn to it; some feel it’s difficult to work with when retying bales, others feel it’s easier. Some don’t like to use the poly twine because of the coating or because they feel it’s not as easy to work with. In most cases ot comes down to personal preference or type of binding available locally.

Placement of Bales
Bales laid flat are usually 16 to 18 inches wide and 14 inches high; they can be 36 to 40 to 48 inches long. Bales stacked on edge are usually 14 inches wide, 16 to 18 inches high, and the same lengths as mentioned for bales laid flat. Bales used to fill in framed spaces – or stacked on end – can be 14, 16 or 18 inches wide depending on how you orient the bale in the space filled.

There has been and continues to be much discussion about the way bales are laid or positioned when stacked. Are bales set on edge or bales laid flat easier to plaster, and what reasons do balers use to explain a preference for one method or the other? Do the bales laid flat have less or ore insulation value – and why?  Do bales set on edge have more tensile strength than bales laid flat?

What to Use and What Not to Use
A bale made with a mechanical baler that chops the straw as the bales are made probably doesn’t produce the best bale for construction – it tends to fall apart or could be harder to work with when cutting and tying.

A bale made from alfalfa will be hard to use – the alfalfa tends to be woody and brittle, the bales are usually not uniform in shape and perhaps even in size to some extent. This may be true of bales made from switchgrass or flax or other “slippery” materials.

Bales made from tumbleweeds are not suitable for bale building – they are very brittle and highly flammable (usually very dry). The same could be said for pine straw bales – the kerosene in the pine needles is flammable and the pine needles are also one of those “slippery” materials mentioned earlier.

The most common materials used for buildable bales are wheat, oats, rye, rice, and hemp. It’s said that the Nebraska prairie pioneers used prairie meadow hay (probably hard to find these days), cattails and wetland reeds (most often baled during droughts). We’ve heard of the use of bales made with timothy grass, Sudan grass, and barley. We’ve been asked about corn stover and soybean stover – but don’t know of anyone who’s ever used this crop residue as a bale building material. If you’ve heard of other materials used for buildable bales, please let TLS know.

Leave a Reply